Refactor decoder / renderer / display pages into Javascript modules

Revert limb patterns, as they're breaking MP.bin
main
Jeremy Penner 2024-01-03 02:50:44 -05:00
parent 70f2d0338a
commit a5b8712ec8
7 changed files with 932 additions and 905 deletions

View File

@ -15,7 +15,6 @@
line-height:1.2
}
</style>
<script src="index.js?v=4"></script>
</head>
<body>
<h1 id="filename"></h1>
@ -33,7 +32,10 @@
</div>
<div id="errors"></div>
<a href="index.html">Back</a>
<script>
<script type="module">
import { decodeBody, choreographyActions } from "./codec.js"
import { docBuilder, decodeBinary, showAll, actionShower, limbAnimationShower, celShower, textNode } from "./show.js"
const propFilter = (key, value) => {
if (key != "bitmap" && key != "data" && key != "canvas") {
return value
@ -51,31 +53,31 @@
const q = new URLSearchParams(window.location.search)
const filename = q.get("f")
document.getElementById("filename").innerText = filename
const doc = docBuilder({ errorContainer: document.getElementById("errors") })
try {
const body = await decodeBinary(filename, BodyImpl)
const body = await decodeBinary(filename, decodeBody)
dumpProp(body, document.getElementById("data"))
if (body.error) {
showError(body.error, filename)
doc.showError(body.error, filename)
} else {
const celContainer = document.getElementById("cels")
const limbContainer = document.getElementById("limbs")
for (const [ilimb, limb] of body.limbs.entries()) {
labelLimb(celContainer, ilimb)
showCels(limb, celContainer)
labelLimb(celContainer, ilimb)
showAll(doc, celContainer, filename, limb.cels, celShower())
labelLimb(limbContainer, ilimb)
showAnimations(limb, limbContainer, LimbImpl)
showAll(doc, limbContainer, filename, limb.animations, limbAnimationShower(limb))
}
const actionContainer = document.getElementById("actions")
for (const action of choreographyActions) {
showAll(doc, actionContainer, filename, choreographyActions, (action) => {
if (action == "stand" || body.actions[action] != body.actions["stand"]) {
actionContainer.appendChild(textNode(action, "div"))
actionContainer.appendChild(createAnimation(action, body, BodyImpl))
return [textNode(action, "div"), actionShower(body)(action)]
}
}
})
}
} catch (e) {
showError(e, filename)
doc.showError(e, filename)
}
}
onload()

497
codec.js Normal file
View File

@ -0,0 +1,497 @@
const LE = true // little-endian
// JS bitmap format: array of scanlines, each scanline being an array of numbers from 0-3
export const emptyBitmap = (w, h, color = 0) => {
const bitmap = []
for (let y = 0; y < h; y ++) {
const scanline = []
for (let x = 0; x < w; x ++) {
scanline.push(color)
scanline.push(color)
scanline.push(color)
scanline.push(color)
}
bitmap.push(scanline)
}
return bitmap
}
export const drawByte = (bitmap, x, y, byte) => {
bitmap[y][x] = (byte & 0xc0) >> 6
bitmap[y][x + 1] = (byte & 0x30) >> 4
bitmap[y][x + 2] = (byte & 0x0c) >> 2
bitmap[y][x + 3] = (byte & 0x03)
}
const signedByte = (byte) => {
if ((byte & 0x80) != 0) {
const complement = (byte ^ 0xff) + 1
return -complement
} else {
return byte
}
}
const decodeHowHeld = (byte) => {
const heldVal = byte & 0xc0
if (heldVal == 0) {
return "swing"
} else if (heldVal == 0x40) {
return "out"
} else if (heldVal == 0x80) {
return "both"
} else {
return "at_side"
}
}
const encodeHowHeld = (howHeld) => {
if (howHeld == "swing") {
return 0x00
} else if (howHeld == "out") {
return 0x40
} else if (howHeld == "both") {
return 0x80
} else if (howHeld == "at_side") {
return 0xc0
} else {
throw new Error(`Unknown hold "${howHeld}"`)
}
}
const decodeCelType = (byte) => {
const typeVal = byte & 0xc0
if (typeVal == 0x00) {
if ((byte & 0x20) == 0) {
return "bitmap"
} else {
return "text"
}
} else if (typeVal == 0x40) {
return "trap"
} else if (typeVal == 0x80) {
return "box"
} else {
return "circle"
}
}
const encodeCelType = (type) => {
if (type == "bitmap") {
return 0x00
} else if (type == "text") {
return 0x20
} else if (type == "trap") {
return 0x40
} else if (type == "box") {
return 0x80
} else if (type == "circle") {
return 0xc0
} else {
throw new Error(`Unknown cel type "${type}"`)
}
}
const celDecoder = {}
const celEncoder = {}
celDecoder.bitmap = (data, cel) => {
// bitmap cells are RLE-encoded vertical strips of bytes. Decoding starts from the bottom-left
// and proceeds upwards until the top of the bitmap is hit; then then next vertical strip is decoded.
// Each byte describes four 2-bit pixels.
const bitmap = emptyBitmap(cel.width, cel.height)
let ibmp = 0
const end = cel.width * cel.height
const putByte = (byte) => {
const x = Math.floor(ibmp / cel.height) * 4
const y = (cel.height - (ibmp % cel.height)) - 1
drawByte(bitmap, x, y, byte)
ibmp ++
}
let i = 6
while (ibmp < end) {
const byte = data.getUint8(i)
i ++
if (byte == 0) {
// A zero byte denotes the start of a run of identical bytes. The second
// byte denotes the number of repetitions.
const count = data.getUint8(i)
i ++
if ((count & 0x80) == 0) {
// if the high bit of the count is not set, we read a third byte to
// determine the byte to repeat.
const val = data.getUint8(i)
i ++
for (let repeat = 0; repeat < count; repeat ++) {
putByte(val)
}
} else {
// if the high bit of the count is set, the lower 7 bits are used as
// the count, and a fully transparent byte is repeated.
for (let repeat = 0; repeat < (count & 0x7f); repeat ++) {
putByte(0)
}
}
} else {
// non-zero bytes are raw bitmap data
putByte(byte)
}
}
cel.bitmap = bitmap
}
celDecoder.box = (data, cel) => {
const bitmap = emptyBitmap(cel.width, cel.height)
cel.borderLR = (data.getUint8(0) & 0x20) != 0
cel.borderTB = (data.getUint8(0) & 0x10) != 0
cel.pattern = data.getUint8(6)
for (let y = 0; y < cel.height; y ++) {
for (let x = 0; x < cel.width; x ++) {
if (cel.borderTB && (y == 0 || y == (cel.height - 1))) {
drawByte(bitmap, x * 4, y, 0xaa)
} else {
drawByte(bitmap, x * 4, y, cel.pattern)
}
}
if (cel.borderLR) {
const line = bitmap[y]
line[0] = 2
line[line.length - 1] = 2
}
}
cel.bitmap = bitmap
}
const horizontalLine = (bitmap, xa, xb, y, patternByte) => {
const xStart = xa - (xa % 4)
const xEnd = (xb + (3 - (xb % 4))) - 3
for (let x = xStart + 4; x < xEnd; x += 4) {
drawByte(bitmap, x, y, patternByte)
}
const startBit = ((xa - xStart) * 2)
const startByte = (0xff >> startBit) & patternByte
drawByte(bitmap, xStart, y, startByte)
const endBit = (((xEnd + 3) - xb) * 2)
const endByte = (0xff << endBit) & patternByte
drawByte(bitmap, xEnd, y, endByte)
}
celDecoder.trap = (data, cel) => {
let border = false
// trap.m:21 - high-bit set means "draw a border"
// It looks like this was used as a flag and the real height
// was ORed with 0x80 - see house2.m, sign2.m
// There are also trapezoids that use 0x80 as their height -
// bwall6.m, bwall7.m, bwall9.m, magic_wall.m
// This appears to be special-cased to mean "no border" at trap.m:26
// mix.m:253 appears to have the logic to calculate y2, extracting
// the height by ANDing with 0x7f (when not 0x80)
if ((cel.height & 0x80) != 0 && cel.height != 0x80) {
border = true
cel.height = cel.height & 0x7f
}
if ((data.getUint8(0) & 0x10) == 0) {
// shape_pattern is a repeating 4-pixel colour, same as box
cel.pattern = data.getUint8(6)
} else {
// shape_pattern is 0xff, and the pattern is a bitmap that follows
// the trapezoid definition
// dline.m:103 - first two bytes are bitmasks used for efficiently calculating
// offsets into the texture. This means that the dimensions will be a power of
// two, and we can get the width and height simply by adding one to the mask.
const texW = data.getUint8(11) + 1
const texH = data.getUint8(12) + 1
cel.texture = emptyBitmap(texW, texH)
let i = 13
// dline.m:111 - the y position into the texture is calculated by
// ANDing y1 with the height mask; thus, unlike prop bitmaps, we decode
// from the top down
for (let y = 0; y < texH; y ++) {
for (let x = 0; x < texW; x ++) {
drawByte(cel.texture, x * 4, y, data.getUint8(i))
i ++
}
}
}
cel.x1a = data.getUint8(7)
cel.x1b = data.getUint8(8)
cel.x2a = data.getUint8(9)
cel.x2b = data.getUint8(10)
// trapezoid-drawing algorithm:
// draw_line: draws a line from x1a,y1 to x1b, y1
// handles border drawing (last/first line, edges)
// decreases vcount, then jumps to cycle1 if there
// are more lines
// cycle1: run bresenham, determine if x1a (left edge) needs to be incremented
// or decremented (self-modifying code! the instruction in inc_dec1 is
// written at trap.m:52)
// has logic to jump back to cycle1 if we have a sharp enough angle that
// we need to move more than one pixel horizontally
// cycle2: same thing, but for x2a (right edge)
// at the end, increments y1 and jumps back to the top of draw_line
cel.width = Math.floor((Math.max(cel.x1a, cel.x1b, cel.x2a, cel.x2b) + 3) / 4)
// trap.m:32 - delta_y and vcount are calculated by subtracting y2 - y1.
// mix.m:253: y2 is calculated as cel_y + cel_height
// mix.m:261: y1 is calculated as cel_y + 1
// So for a one-pixel tall trapezoid, deltay is 0, because y1 == y2.
// vcount is decremented until it reaches -1, compensating for the off-by-one.
const deltay = cel.height - 1
cel.bitmap = emptyBitmap(cel.width, cel.height)
const dxa = Math.abs(cel.x1a - cel.x2a)
const dxb = Math.abs(cel.x1b - cel.x2b)
const countMaxA = Math.max(dxa, deltay)
const countMaxB = Math.max(dxb, deltay)
const inca = cel.x1a < cel.x2a ? 1 : -1
const incb = cel.x1b < cel.x2b ? 1 : -1
let x1aLo = Math.floor(countMaxA / 2)
let y1aLo = x1aLo
let x1bLo = Math.floor(countMaxB / 2)
let y1bLo = x1bLo
let xa = cel.x1a
let xb = cel.x1b
for (let y = 0; y < cel.height; y ++) {
const line = cel.bitmap[y]
if (border && (y == 0 || y == (cel.height - 1))) {
// top and bottom border line
horizontalLine(cel.bitmap, xa, xb, y, 0xaa, true)
} else {
if (cel.texture) {
const texLine = cel.texture[y % cel.texture.length]
for (let x = xa; x <= xb; x ++) {
line[x] = texLine[x % texLine.length]
}
} else {
horizontalLine(cel.bitmap, xa, xb, y, cel.pattern, border)
}
}
if (border) {
line[xa] = 2
line[xb] = 2
}
// cycle1: move xa
do {
x1aLo += dxa
if (x1aLo >= countMaxA) {
x1aLo -= countMaxA
xa += inca
}
y1aLo += deltay
} while (y1aLo < countMaxA)
y1aLo -= countMaxA
// cycle2: move xb
do {
x1bLo += dxb
if (x1bLo >= countMaxB) {
x1bLo -= countMaxB
xb += incb
}
y1bLo += deltay
} while (y1bLo < countMaxA)
y1bLo -= countMaxA
}
}
const decodeCel = (data, changesColorRam) => {
const cel = {
data: data,
changesColorRam: changesColorRam,
type: decodeCelType(data.getUint8(0)),
// wild: (data.getUint8(0) & 0x10) == 0 ? "color" : "pattern",
width: data.getUint8(0) & 0x0f,
height: data.getUint8(1),
xOffset: data.getInt8(2),
yOffset: data.getInt8(3),
xRel: data.getInt8(4),
yRel: data.getInt8(5)
}
if (celDecoder[cel.type]) {
celDecoder[cel.type](data, cel)
}
return cel
}
const decodeSide = (byte) => {
const side = byte & 0x03
if (side == 0x00) {
return "left"
} else if (side == 0x01) {
return "right"
} else if (side == 0x02) {
return "up"
} else {
return "down"
}
}
const encodeSide = (side) => {
if (side == "left") {
return 0x00
} else if (side == "right") {
return 0x01
} else if (side == "up") {
return 0x02
} else if (side == "down") {
return 0x03
} else {
throw new Error(`Unknown side "${side}"`)
}
}
const decodeWalkto = (byte) => {
return { fromSide: decodeSide(byte), offset: signedByte(byte & 0xfc) }
}
const encodeWalkto = ({ fromSide, offset }) => {
return encodeSide(fromSide) | (offset & 0xfc)
}
const decodeAnimations = (data, startEndTableOff, firstCelOff, stateCount) => {
const animations = []
// The prop structure also does not encode a count for how many frames there are, so we simply
// stop parsing once we find one that doesn't make sense.
// We also use the heuristic that this structure always precedes the first cel, as that seems to be
// consistently be the case with all the props in the Habitat source tree. We'll stop reading
// animation data if we cross that boundary. If we encounter a prop that has the animation data
// _after_ the cel data, which would be legal but doesn't happen in practice, then we ignore this
// heuristic rather than failing to parse any animation data.
// It's possible for there to be no frames, which is represented by an offset of 0 (no_animation)
if (startEndTableOff != 0) {
for (let frameOff = startEndTableOff; (startEndTableOff > firstCelOff) || (frameOff < firstCelOff); frameOff += 2) {
// each animation is two bytes: the starting state, and the ending state
// the first byte can have its high bit set to indicate that the animation should cycle
const cycle = (data.getUint8(frameOff) & 0x80) != 0
const startState = data.getUint8(frameOff) & 0x7f
const endState = data.getUint8(frameOff + 1)
if (startState >= stateCount || endState >= stateCount) {
break
}
animations.push({ cycle: cycle, startState: startState, endState: endState })
}
}
return animations
}
export const decodeProp = (data) => {
const prop = {
data: data,
howHeld: decodeHowHeld(data.getUint8(0)),
colorBitmask: data.getUint8(1),
containerXYOff: data.getUint8(3), // TODO: parse this when nonzero
walkto: { left: decodeWalkto(data.getUint8(4)), right: decodeWalkto(data.getUint8(5)), yoff: data.getInt8(6) },
celmasks: [],
cels: []
}
const stateCount = (data.getUint8(0) & 0x3f) + 1
const graphicStateOff = data.getUint8(2)
const celMasksOff = 7
const celOffsetsOff = celMasksOff + stateCount
// The prop structure does not directly encode a count for how many cels there are, but each
// "graphic state" is defined by a bitmask marking which cels are present, and we do know how
// many states there are. We can assume that all cels are referenced by at least one state,
// and use that to determine the cel count.
let allCelsMask = 0
for (let icelmask = 0; icelmask < stateCount; icelmask ++) {
const celmask = data.getUint8(celMasksOff + icelmask)
prop.celmasks.push(celmask)
allCelsMask |= celmask
}
if (allCelsMask != 0x80 && allCelsMask != 0xc0 && allCelsMask != 0xe0 && allCelsMask != 0xf0 &&
allCelsMask != 0xf8 && allCelsMask != 0xfc && allCelsMask != 0xfe && allCelsMask != 0xff) {
throw new Error("Inconsistent graphic state cel masks - implies unused cel data")
}
let firstCelOff = Number.POSITIVE_INFINITY
for (let celOffsetOff = celOffsetsOff; allCelsMask != 0; celOffsetOff += 2) {
const icel = prop.cels.length
const celbit = 0x80 >> icel
const celOff = data.getUint16(celOffsetOff, LE)
firstCelOff = Math.min(celOff, firstCelOff)
prop.cels.push(decodeCel(new DataView(data.buffer, celOff), (prop.colorBitmask & celbit) != 0))
allCelsMask = (allCelsMask << 1) & 0xff
}
prop.animations = decodeAnimations(data, graphicStateOff, firstCelOff, stateCount)
return prop
}
const decodeLimb = (data, limb) => {
let frameCount = data.getUint8(0) + 1
limb.frames = []
for (let iframe = 0; iframe < frameCount; iframe ++) {
limb.frames.push(data.getInt8(3 + iframe))
}
const celOffsetsOff = 3 + frameCount
const maxCelIndex = Math.max(...limb.frames)
limb.cels = []
let firstCelOff
for (let icel = 0; icel <= maxCelIndex; icel ++) {
const celOff = data.getUint16(celOffsetsOff + (icel * 2), LE)
if (icel == 0) {
firstCelOff = celOff
}
limb.cels.push(decodeCel(new DataView(data.buffer, data.byteOffset + celOff)))
}
limb.animations = decodeAnimations(data, data.getUint8(2), firstCelOff, limb.frames.length)
}
export const choreographyActions = [
"init", "stand", "walk", "hand_back", "sit_floor", "sit_chair", "bend_over",
"bend_back", "point", "throw", "get_shot", "jump", "punch", "wave",
"frown", "stand_back", "walk_front", "walk_back", "stand_front",
"unpocket", "gimme", "knife", "arm_get", "hand_out", "operate",
"arm_back", "shoot1", "shoot2", "nop", "sit_front"
]
export const decodeBody = (data) => {
const body = {
data: data,
headCelNumber: data.getUint8(19),
frozenWhenStands: data.getUint8(20),
frontFacingLimbOrder: [],
backFacingLimbOrder: [],
limbs: [],
choreography: [],
actions: {}
}
for (let ilimb = 0; ilimb < 6; ilimb ++) {
body.frontFacingLimbOrder.push(data.getUint8(27 + ilimb))
body.backFacingLimbOrder.push(data.getUint8(33 + ilimb))
const limb = {
pattern: data.getUint8(21 + ilimb),
affectedByHeight: data.getUint8(39 + ilimb)
}
const limbOff = data.getUint16(7 + (ilimb * 2), LE)
decodeLimb(new DataView(data.buffer, limbOff), limb)
body.limbs.push(limb)
}
const choreographyIndexOff = data.getUint16(0, LE)
const choreographyTableOff = data.getUint16(2, LE)
const indexToChoreography = new Map()
for (const [i, action] of choreographyActions.entries()) {
let tableIndex = data.getUint8(choreographyIndexOff + i)
let choreographyIndex = indexToChoreography.get(tableIndex)
if (choreographyIndex == undefined) {
choreographyIndex = body.choreography.length
indexToChoreography.set(tableIndex, choreographyIndex)
const choreography = []
body.choreography.push(choreography)
for (;; tableIndex ++) {
const state = data.getUint8(choreographyTableOff + tableIndex)
let limb = (state & 0x70) >> 4
let animation = state & 0x0f
if (limb == 6) {
limb = 5
animation += 0x10
}
choreography.push({ limb, animation })
if ((state & 0x80) != 0) {
break
}
}
}
body.actions[action] = choreographyIndex
}
return body
}

View File

@ -15,7 +15,6 @@
line-height:1.2
}
</style>
<script src="index.js?v=4"></script>
</head>
<body>
<h1 id="filename"></h1>
@ -33,7 +32,10 @@
</div>
<div id="errors"></div>
<a href="index.html">Back</a>
<script>
<script type="module">
import { decodeProp } from "./codec.js"
import { docBuilder, decodeBinary, showAll, textNode, propAnimationShower, celmaskShower, celShower } from "./show.js"
const propFilter = (key, value) => {
if (key != "bitmap" && key != "data" && key != "canvas") {
return value
@ -47,15 +49,16 @@
const q = new URLSearchParams(window.location.search)
const filename = q.get("f")
document.getElementById("filename").innerText = filename
const doc = docBuilder({ errorContainer: document.getElementById("errors") })
try {
const prop = await decodeBinary(filename, PropImpl)
const prop = await decodeBinary(filename, decodeProp)
dumpProp(prop, document.getElementById("data"))
if (prop.error) {
showError(prop.error, filename)
doc.showError(prop.error, filename)
} else {
showAnimations(prop, document.getElementById("animations"), PropImpl)
showStates(prop, document.getElementById("states"))
showCels(prop, document.getElementById("cels"))
showAll(doc, document.getElementById("animations"), filename, prop.animations, propAnimationShower(prop))
showAll(doc, document.getElementById("states"), filename, prop.celmasks, celmaskShower(prop))
showAll(doc, document.getElementById("cels"), filename, prop.cels, celShower())
}
} catch (e) {
showError(e, filename)

View File

@ -15,18 +15,19 @@
line-height:1.2
}
</style>
<script src="index.js?v=4"></script>
<script>
function showErrors() {
<script type="module">
import { displayBodies, displayProps } from "./index.js"
window.showErrors = () => {
document.getElementById('errors').style.display = 'block'
}
const displayEverything = async () => {
await displayList("bodies.json", "bodies", BodyImpl)
await displayList("heads.json", "heads", PropImpl)
await displayList("props.json", "props", PropImpl)
await displayList("misc.json", "misc", PropImpl)
await displayList("beta.json", "beta", PropImpl)
const displayEverything = () => {
displayBodies("bodies.json", "bodies")
displayProps("heads.json", "heads")
displayProps("props.json", "props")
displayProps("misc.json", "misc")
displayProps("beta.json", "beta")
}
displayEverything()

903
index.js
View File

@ -1,893 +1,34 @@
const LE = true // little-endian
import { decodeProp, decodeBody } from "./codec.js"
import { docBuilder, showAll, decodeBinary, textNode, propAnimationShower, celmaskShower, actionShower } from "./show.js"
const readBinary = async (url) => {
const response = await fetch(url)
if (!response.ok) {
console.log(response)
throw Error(`Failed to download ${url}`)
}
return new DataView(await response.arrayBuffer())
}
const makeCanvas = (w, h) => {
const canvas = document.createElement("canvas")
canvas.width = w
canvas.height = h
return canvas
}
// C64 RGB values taken from https://www.c64-wiki.com/wiki/Color
const c64Colors = [
0x000000, 0xffffff, 0x880000, 0xaaffee, 0xcc44cc, 0x00cc55,
0x0000aa, 0xeeee77, 0xdd8855, 0x664400, 0xff7777, 0x333333,
0x777777, 0xaaff66, 0x0088ff, 0xbbbbbb
]
// from paint.m:447
const celPatterns = [
[0x00, 0x00, 0x00, 0x00],
[0xaa, 0xaa, 0xaa, 0xaa],
[0xff, 0xff, 0xff, 0xff],
[0xe2, 0xe2, 0xe2, 0xe2],
[0x8b, 0xbe, 0x0f, 0xcc],
[0xee, 0x00, 0xee, 0x00],
[0xf0, 0xf0, 0x0f, 0x0f],
[0x22, 0x88, 0x22, 0x88],
[0x32, 0x88, 0x23, 0x88],
[0x00, 0x28, 0x3b, 0x0c],
[0x33, 0xcc, 0x33, 0xcc],
[0x08, 0x80, 0x0c, 0x80],
[0x3f, 0x3f, 0xf3, 0xf3],
[0xaa, 0x3f, 0xaa, 0xf3],
[0xaa, 0x00, 0xaa, 0x00],
[0x55, 0x55, 0x55, 0x55]
]
const defaultColors = {
wildcard: 6,
skin: 10,
pattern: 15
}
const canvasFromBitmap = (bitmap, colors = {}) => {
if (bitmap.length == 0 || bitmap[0].length == 0) {
return null
}
const { wildcard, pattern, skin } = { ...defaultColors, ...colors }
const patternColors = [6, wildcard, 0, skin]
const h = bitmap.length
const w = bitmap[0].length * 2
const canvas = makeCanvas(w, h)
const ctx = canvas.getContext("2d")
const img = ctx.createImageData(w, h)
const putpixel = (x, y, r, g, b, a) => {
const i = (x * 8) + (y * w * 4)
img.data[i] = r
img.data[i + 1] = g
img.data[i + 2] = b
img.data[i + 3] = a
img.data[i + 4] = r
img.data[i + 5] = g
img.data[i + 6] = b
img.data[i + 7] = a
}
for (let y = 0; y < bitmap.length; y ++) {
const line = bitmap[y]
const patbyte = celPatterns[pattern][y % 4]
for (let x = 0; x < line.length; x ++) {
const pixel = line[x]
let color = null
if (pixel == 0) { // transparent
putpixel(x, y, 0, 0, 0, 0)
} else if (pixel == 1) { // wild
const shift = (x % 4) * 2
color = patternColors[(patbyte & (0xc0 >> shift)) >> (6 - shift)]
} else {
color = patternColors[pixel]
}
if (color != null) {
const rgb = c64Colors[color]
putpixel(x, y, (rgb & 0xff0000) >> 16, (rgb & 0xff00) >> 8, rgb & 0xff, 0xff)
}
}
}
ctx.putImageData(img, 0, 0)
return canvas
}
const signedByte = (byte) => {
if ((byte & 0x80) != 0) {
const complement = (byte ^ 0xff) + 1
return -complement
const showProp = (prop) => {
if (prop.filename == 'heads/fhead.bin') {
return textNode("CW: Pixel genitals")
} else if (prop.animations.length > 0) {
return prop.animations.map(propAnimationShower(prop))
} else {
return byte
return prop.celmasks.map(celmaskShower(prop))
}
}
// JS bitmap format: array of scanlines, each scanline being an array of numbers from 0-3
const emptyBitmap = (w, h, color = 0) => {
const bitmap = []
for (let y = 0; y < h; y ++) {
const scanline = []
for (let x = 0; x < w; x ++) {
scanline.push(color)
scanline.push(color)
scanline.push(color)
scanline.push(color)
}
bitmap.push(scanline)
}
return bitmap
}
const showBody = (body) => actionShower(body)("walk")
const drawByte = (bitmap, x, y, byte) => {
bitmap[y][x] = (byte & 0xc0) >> 6
bitmap[y][x + 1] = (byte & 0x30) >> 4
bitmap[y][x + 2] = (byte & 0x0c) >> 2
bitmap[y][x + 3] = (byte & 0x03)
}
// Prop decoding functions
const decodeHowHeld = (byte) => {
const heldVal = byte & 0xc0
if (heldVal == 0) {
return "swing"
} else if (heldVal == 0x40) {
return "out"
} else if (heldVal == 0x80) {
return "both"
} else {
return "at_side"
}
}
const encodeHowHeld = (howHeld) => {
if (howHeld == "swing") {
return 0x00
} else if (howHeld == "out") {
return 0x40
} else if (howHeld == "both") {
return 0x80
} else if (howHeld == "at_side") {
return 0xc0
} else {
throw new Error(`Unknown hold "${howHeld}"`)
}
}
const decodeCelType = (byte) => {
const typeVal = byte & 0xc0
if (typeVal == 0x00) {
if ((byte & 0x20) == 0) {
return "bitmap"
} else {
return "text"
}
} else if (typeVal == 0x40) {
return "trap"
} else if (typeVal == 0x80) {
return "box"
} else {
return "circle"
}
}
const encodeCelType = (type) => {
if (type == "bitmap") {
return 0x00
} else if (type == "text") {
return 0x20
} else if (type == "trap") {
return 0x40
} else if (type == "box") {
return 0x80
} else if (type == "circle") {
return 0xc0
} else {
throw new Error(`Unknown cel type "${type}"`)
}
}
const celDecoder = {}
const celEncoder = {}
celDecoder.bitmap = (data, cel) => {
// bitmap cells are RLE-encoded vertical strips of bytes. Decoding starts from the bottom-left
// and proceeds upwards until the top of the bitmap is hit; then then next vertical strip is decoded.
// Each byte describes four 2-bit pixels.
const bitmap = emptyBitmap(cel.width, cel.height)
let ibmp = 0
const end = cel.width * cel.height
const putByte = (byte) => {
const x = Math.floor(ibmp / cel.height) * 4
const y = (cel.height - (ibmp % cel.height)) - 1
drawByte(bitmap, x, y, byte)
ibmp ++
}
let i = 6
while (ibmp < end) {
const byte = data.getUint8(i)
i ++
if (byte == 0) {
// A zero byte denotes the start of a run of identical bytes. The second
// byte denotes the number of repetitions.
const count = data.getUint8(i)
i ++
if ((count & 0x80) == 0) {
// if the high bit of the count is not set, we read a third byte to
// determine the byte to repeat.
const val = data.getUint8(i)
i ++
for (let repeat = 0; repeat < count; repeat ++) {
putByte(val)
}
} else {
// if the high bit of the count is set, the lower 7 bits are used as
// the count, and a fully transparent byte is repeated.
for (let repeat = 0; repeat < (count & 0x7f); repeat ++) {
putByte(0)
}
}
} else {
// non-zero bytes are raw bitmap data
putByte(byte)
}
}
cel.bitmap = bitmap
}
celDecoder.box = (data, cel) => {
const bitmap = emptyBitmap(cel.width, cel.height)
cel.borderLR = (data.getUint8(0) & 0x20) != 0
cel.borderTB = (data.getUint8(0) & 0x10) != 0
cel.pattern = data.getUint8(6)
for (let y = 0; y < cel.height; y ++) {
for (let x = 0; x < cel.width; x ++) {
if (cel.borderTB && (y == 0 || y == (cel.height - 1))) {
drawByte(bitmap, x * 4, y, 0xaa)
} else {
drawByte(bitmap, x * 4, y, cel.pattern)
}
}
if (cel.borderLR) {
const line = bitmap[y]
line[0] = 2
line[line.length - 1] = 2
}
}
cel.bitmap = bitmap
}
const horizontalLine = (bitmap, xa, xb, y, patternByte) => {
const xStart = xa - (xa % 4)
const xEnd = (xb + (3 - (xb % 4))) - 3
for (let x = xStart + 4; x < xEnd; x += 4) {
drawByte(bitmap, x, y, patternByte)
}
const startBit = ((xa - xStart) * 2)
const startByte = (0xff >> startBit) & patternByte
drawByte(bitmap, xStart, y, startByte)
const endBit = (((xEnd + 3) - xb) * 2)
const endByte = (0xff << endBit) & patternByte
drawByte(bitmap, xEnd, y, endByte)
}
celDecoder.trap = (data, cel) => {
let border = false
// trap.m:21 - high-bit set means "draw a border"
// It looks like this was used as a flag and the real height
// was ORed with 0x80 - see house2.m, sign2.m
// There are also trapezoids that use 0x80 as their height -
// bwall6.m, bwall7.m, bwall9.m, magic_wall.m
// This appears to be special-cased to mean "no border" at trap.m:26
// mix.m:253 appears to have the logic to calculate y2, extracting
// the height by ANDing with 0x7f (when not 0x80)
if ((cel.height & 0x80) != 0 && cel.height != 0x80) {
border = true
cel.height = cel.height & 0x7f
}
if ((data.getUint8(0) & 0x10) == 0) {
// shape_pattern is a repeating 4-pixel colour, same as box
cel.pattern = data.getUint8(6)
} else {
// shape_pattern is 0xff, and the pattern is a bitmap that follows
// the trapezoid definition
// dline.m:103 - first two bytes are bitmasks used for efficiently calculating
// offsets into the texture. This means that the dimensions will be a power of
// two, and we can get the width and height simply by adding one to the mask.
const texW = data.getUint8(11) + 1
const texH = data.getUint8(12) + 1
cel.texture = emptyBitmap(texW, texH)
let i = 13
// dline.m:111 - the y position into the texture is calculated by
// ANDing y1 with the height mask; thus, unlike prop bitmaps, we decode
// from the top down
for (let y = 0; y < texH; y ++) {
for (let x = 0; x < texW; x ++) {
drawByte(cel.texture, x * 4, y, data.getUint8(i))
i ++
}
}
}
cel.x1a = data.getUint8(7)
cel.x1b = data.getUint8(8)
cel.x2a = data.getUint8(9)
cel.x2b = data.getUint8(10)
// trapezoid-drawing algorithm:
// draw_line: draws a line from x1a,y1 to x1b, y1
// handles border drawing (last/first line, edges)
// decreases vcount, then jumps to cycle1 if there
// are more lines
// cycle1: run bresenham, determine if x1a (left edge) needs to be incremented
// or decremented (self-modifying code! the instruction in inc_dec1 is
// written at trap.m:52)
// has logic to jump back to cycle1 if we have a sharp enough angle that
// we need to move more than one pixel horizontally
// cycle2: same thing, but for x2a (right edge)
// at the end, increments y1 and jumps back to the top of draw_line
cel.width = Math.floor((Math.max(cel.x1a, cel.x1b, cel.x2a, cel.x2b) + 3) / 4)
// trap.m:32 - delta_y and vcount are calculated by subtracting y2 - y1.
// mix.m:253: y2 is calculated as cel_y + cel_height
// mix.m:261: y1 is calculated as cel_y + 1
// So for a one-pixel tall trapezoid, deltay is 0, because y1 == y2.
// vcount is decremented until it reaches -1, compensating for the off-by-one.
const deltay = cel.height - 1
cel.bitmap = emptyBitmap(cel.width, cel.height)
const dxa = Math.abs(cel.x1a - cel.x2a)
const dxb = Math.abs(cel.x1b - cel.x2b)
const countMaxA = Math.max(dxa, deltay)
const countMaxB = Math.max(dxb, deltay)
const inca = cel.x1a < cel.x2a ? 1 : -1
const incb = cel.x1b < cel.x2b ? 1 : -1
let x1aLo = Math.floor(countMaxA / 2)
let y1aLo = x1aLo
let x1bLo = Math.floor(countMaxB / 2)
let y1bLo = x1bLo
let xa = cel.x1a
let xb = cel.x1b
for (let y = 0; y < cel.height; y ++) {
const line = cel.bitmap[y]
if (border && (y == 0 || y == (cel.height - 1))) {
// top and bottom border line
horizontalLine(cel.bitmap, xa, xb, y, 0xaa, true)
} else {
if (cel.texture) {
const texLine = cel.texture[y % cel.texture.length]
for (let x = xa; x <= xb; x ++) {
line[x] = texLine[x % texLine.length]
}
} else {
horizontalLine(cel.bitmap, xa, xb, y, cel.pattern, border)
}
}
if (border) {
line[xa] = 2
line[xb] = 2
}
// cycle1: move xa
do {
x1aLo += dxa
if (x1aLo >= countMaxA) {
x1aLo -= countMaxA
xa += inca
}
y1aLo += deltay
} while (y1aLo < countMaxA)
y1aLo -= countMaxA
// cycle2: move xb
do {
x1bLo += dxb
if (x1bLo >= countMaxB) {
x1bLo -= countMaxB
xb += incb
}
y1bLo += deltay
} while (y1bLo < countMaxA)
y1bLo -= countMaxA
}
}
const decodeCel = (data, changesColorRam) => {
const cel = {
data: data,
changesColorRam: changesColorRam,
type: decodeCelType(data.getUint8(0)),
// wild: (data.getUint8(0) & 0x10) == 0 ? "color" : "pattern",
width: data.getUint8(0) & 0x0f,
height: data.getUint8(1),
xOffset: data.getInt8(2),
yOffset: data.getInt8(3),
xRel: data.getInt8(4),
yRel: data.getInt8(5)
}
if (celDecoder[cel.type]) {
celDecoder[cel.type](data, cel)
}
return cel
}
const decodeSide = (byte) => {
const side = byte & 0x03
if (side == 0x00) {
return "left"
} else if (side == 0x01) {
return "right"
} else if (side == 0x02) {
return "up"
} else {
return "down"
}
}
const encodeSide = (side) => {
if (side == "left") {
return 0x00
} else if (side == "right") {
return 0x01
} else if (side == "up") {
return 0x02
} else if (side == "down") {
return 0x03
} else {
throw new Error(`Unknown side "${side}"`)
}
}
const decodeWalkto = (byte) => {
return { fromSide: decodeSide(byte), offset: signedByte(byte & 0xfc) }
}
const encodeWalkto = ({ fromSide, offset }) => {
return encodeSide(fromSide) | (offset & 0xfc)
}
const decodeAnimations = (data, startEndTableOff, firstCelOff, stateCount) => {
const animations = []
// The prop structure also does not encode a count for how many frames there are, so we simply
// stop parsing once we find one that doesn't make sense.
// We also use the heuristic that this structure always precedes the first cel, as that seems to be
// consistently be the case with all the props in the Habitat source tree. We'll stop reading
// animation data if we cross that boundary. If we encounter a prop that has the animation data
// _after_ the cel data, which would be legal but doesn't happen in practice, then we ignore this
// heuristic rather than failing to parse any animation data.
// It's possible for there to be no frames, which is represented by an offset of 0 (no_animation)
if (startEndTableOff != 0) {
for (let frameOff = startEndTableOff; (startEndTableOff > firstCelOff) || (frameOff < firstCelOff); frameOff += 2) {
// each animation is two bytes: the starting state, and the ending state
// the first byte can have its high bit set to indicate that the animation should cycle
const cycle = (data.getUint8(frameOff) & 0x80) != 0
const startState = data.getUint8(frameOff) & 0x7f
const endState = data.getUint8(frameOff + 1)
if (startState >= stateCount || endState >= stateCount) {
break
}
animations.push({ cycle: cycle, startState: startState, endState: endState })
}
}
return animations
}
const decodeProp = (data) => {
const prop = {
data: data,
howHeld: decodeHowHeld(data.getUint8(0)),
colorBitmask: data.getUint8(1),
containerXYOff: data.getUint8(3), // TODO: parse this when nonzero
walkto: { left: decodeWalkto(data.getUint8(4)), right: decodeWalkto(data.getUint8(5)), yoff: data.getInt8(6) },
celmasks: [],
cels: []
}
const stateCount = (data.getUint8(0) & 0x3f) + 1
const graphicStateOff = data.getUint8(2)
const celMasksOff = 7
const celOffsetsOff = celMasksOff + stateCount
// The prop structure does not directly encode a count for how many cels there are, but each
// "graphic state" is defined by a bitmask marking which cels are present, and we do know how
// many states there are. We can assume that all cels are referenced by at least one state,
// and use that to determine the cel count.
let allCelsMask = 0
for (let icelmask = 0; icelmask < stateCount; icelmask ++) {
const celmask = data.getUint8(celMasksOff + icelmask)
prop.celmasks.push(celmask)
allCelsMask |= celmask
}
if (allCelsMask != 0x80 && allCelsMask != 0xc0 && allCelsMask != 0xe0 && allCelsMask != 0xf0 &&
allCelsMask != 0xf8 && allCelsMask != 0xfc && allCelsMask != 0xfe && allCelsMask != 0xff) {
throw new Error("Inconsistent graphic state cel masks - implies unused cel data")
}
let firstCelOff = Number.POSITIVE_INFINITY
for (let celOffsetOff = celOffsetsOff; allCelsMask != 0; celOffsetOff += 2) {
const icel = prop.cels.length
const celbit = 0x80 >> icel
const celOff = data.getUint16(celOffsetOff, LE)
firstCelOff = Math.min(celOff, firstCelOff)
prop.cels.push(decodeCel(new DataView(data.buffer, celOff), (prop.colorBitmask & celbit) != 0))
allCelsMask = (allCelsMask << 1) & 0xff
}
prop.animations = decodeAnimations(data, graphicStateOff, firstCelOff, stateCount)
return prop
}
const decodeLimb = (data, limb) => {
let frameCount = data.getUint8(0) + 1
limb.frames = []
for (let iframe = 0; iframe < frameCount; iframe ++) {
limb.frames.push(data.getInt8(3 + iframe))
}
const celOffsetsOff = 3 + frameCount
const maxCelIndex = Math.max(...limb.frames)
limb.cels = []
let firstCelOff
for (let icel = 0; icel <= maxCelIndex; icel ++) {
const celOff = data.getUint16(celOffsetsOff + (icel * 2), LE)
if (icel == 0) {
firstCelOff = celOff
}
limb.cels.push(decodeCel(new DataView(data.buffer, data.byteOffset + celOff)))
}
limb.animations = decodeAnimations(data, data.getUint8(2), firstCelOff, limb.frames.length)
}
const choreographyActions = [
"init", "stand", "walk", "hand_back", "sit_floor", "sit_chair", "bend_over",
"bend_back", "point", "throw", "get_shot", "jump", "punch", "wave",
"frown", "stand_back", "walk_front", "walk_back", "stand_front",
"unpocket", "gimme", "knife", "arm_get", "hand_out", "operate",
"arm_back", "shoot1", "shoot2", "nop", "sit_front"
]
const decodeBody = (data) => {
const body = {
data: data,
headCelNumber: data.getUint8(19),
frozenWhenStands: data.getUint8(20),
frontFacingLimbOrder: [],
backFacingLimbOrder: [],
limbs: [],
choreography: [],
actions: {}
}
for (let ilimb = 0; ilimb < 6; ilimb ++) {
body.frontFacingLimbOrder.push(data.getUint8(27 + ilimb))
body.backFacingLimbOrder.push(data.getUint8(33 + ilimb))
const limb = {
pattern: data.getUint8(21 + ilimb),
affectedByHeight: data.getUint8(39 + ilimb)
}
const limbOff = data.getUint16(7 + (ilimb * 2), LE)
decodeLimb(new DataView(data.buffer, limbOff), limb)
body.limbs.push(limb)
}
const choreographyIndexOff = data.getUint16(0, LE)
const choreographyTableOff = data.getUint16(2, LE)
const indexToChoreography = new Map()
for (const [i, action] of choreographyActions.entries()) {
let tableIndex = data.getUint8(choreographyIndexOff + i)
let choreographyIndex = indexToChoreography.get(tableIndex)
if (choreographyIndex == undefined) {
choreographyIndex = body.choreography.length
indexToChoreography.set(tableIndex, choreographyIndex)
const choreography = []
body.choreography.push(choreography)
for (;; tableIndex ++) {
const state = data.getUint8(choreographyTableOff + tableIndex)
let limb = (state & 0x70) >> 4
let animation = state & 0x0f
if (limb == 6) {
limb = 5
animation += 0x10
}
choreography.push({ limb, animation })
if ((state & 0x80) != 0) {
break
}
}
}
body.actions[action] = choreographyIndex
}
return body
}
const celsFromMask = (prop, celMask) => {
const cels = []
for (let icel = 0; icel < 8; icel ++) {
const celbit = 0x80 >> icel
if ((celMask & celbit) != 0) {
cels.push(prop.cels[icel])
}
}
return cels
}
const compositeCels = (cels, celColors = null, paintOrder = null) => {
if (cels.length == 0) {
return null
}
let minX = Number.POSITIVE_INFINITY
let minY = Number.POSITIVE_INFINITY
let maxX = Number.NEGATIVE_INFINITY
let maxY = Number.NEGATIVE_INFINITY
let xRel = 0
let yRel = 0
let layers = []
for (const [icel, cel] of cels.entries()) {
if (cel) {
const x = cel.xOffset + xRel
const y = -(cel.yOffset + yRel)
minX = Math.min(minX, x)
minY = Math.min(minY, y)
maxX = Math.max(maxX, cel.width + x)
maxY = Math.max(maxY, cel.height + y)
if (cel.bitmap) {
const colors = Array.isArray(celColors) ? celColors[icel] : (celColors ?? {})
layers.push({ canvas: canvasFromBitmap(cel.bitmap, colors), x, y })
} else {
layers.push(null)
}
xRel += cel.xRel
yRel += cel.yRel
} else {
layers.push(null)
}
}
if (paintOrder) {
const reordered = []
for (const ilayer of paintOrder) {
reordered.push(layers[ilayer])
}
layers = reordered
}
const w = (maxX - minX) * 8
const h = maxY - minY
const canvas = makeCanvas(w, h)
const ctx = canvas.getContext("2d")
for (const layer of layers) {
if (layer && layer.canvas) {
ctx.drawImage(layer.canvas, (layer.x - minX) * 8, layer.y - minY)
}
}
return { canvas: canvas, xOffset: minX * 8, yOffset: minY, w: w, h: h }
}
const imageFromCanvas = (canvas) => {
const img = document.createElement("img")
img.src = canvas.toDataURL()
img.width = canvas.width * 3
img.height = canvas.height * 3
img.style.imageRendering = "pixelated"
return img
}
const imageFromBitmap = (bitmap, colors = {}) => imageFromCanvas(canvasFromBitmap(bitmap, colors))
const textNode = (text, type = "span") => {
const node = document.createElement(type)
node.innerText = text
return node
}
const wrapLink = (element, href) => {
const link = document.createElement("a")
link.href = href
link.appendChild(element)
return link
}
const PropImpl = {
decode: decodeProp,
detailHref: (filename) => `detail.html?f=${filename}`,
celsForAnimationState: (prop, istate) => celsFromMask(prop, prop.celmasks[istate]),
}
const LimbImpl = {
celsForAnimationState: (limb, istate) => {
const iframe = limb.frames[istate]
if (iframe >= 0) {
return [limb.cels[iframe]]
} else {
return []
}
}
}
const actionOrientations = {
"stand_back": "back",
"walk_front": "front",
"walk_back": "back",
"stand_front": "front",
"sit_front": "front"
}
const BodyImpl = {
decode: decodeBody,
detailHref: (filename) => `body.html?f=${filename}`,
generateFrames: (action, body, frames) => {
const chore = body.choreography[body.actions[action]]
const animations = []
const orientation = actionOrientations[action] ?? "side"
const limbOrder = orientation == "front" ? body.frontFacingLimbOrder :
orientation == "back" ? body.backFacingLimbOrder :
null // side animations are always displayed in standard limb order
for (const limb of body.limbs) {
if (limb.animations.length > 0) {
animations.push({ ...limb.animations[0] })
} else {
animations.push({ startState: 0, endState: 0 })
}
}
for (const override of chore) {
const ilimb = override.limb
const newAnim = body.limbs[ilimb].animations[override.animation]
animations[ilimb].startState = newAnim.startState
animations[ilimb].endState = newAnim.endState
}
while (true) {
const cels = []
const celColors = []
let restartedCount = 0
for (const [ilimb, limb] of body.limbs.entries()) {
const animation = animations[ilimb]
if (animation.current == undefined) {
animation.current = animation.startState
} else {
animation.current ++
if (animation.current > animation.endState) {
animation.current = animation.startState
restartedCount ++
}
}
const istate = limb.frames[animation.current]
if (istate >= 0) {
cels.push(limb.cels[istate])
} else {
cels.push(null)
}
celColors.push({ pattern: limb.pattern })
}
if (restartedCount == animations.length) {
break
}
frames.push(compositeCels(cels, celColors, limbOrder))
}
}
}
const linkDetail = (element, filename, impl) => {
return impl && impl.detailHref ? wrapLink(element, impl.detailHref(filename)) : element
}
const createAnimation = (animation, value, impl) => {
const frames = []
if (impl.generateFrames) {
impl.generateFrames(animation, value, frames)
} else {
for (let istate = animation.startState; istate <= animation.endState; istate ++) {
const frame = compositeCels(impl.celsForAnimationState(value, istate))
if (frame != null) {
frames.push(frame)
}
}
}
if (frames.length == 0) {
return textNode("")
} else if (frames.length == 1) {
return imageFromCanvas(frames[0].canvas)
}
let minX = Number.POSITIVE_INFINITY
let minY = Number.POSITIVE_INFINITY
let maxX = Number.NEGATIVE_INFINITY
let maxY = Number.NEGATIVE_INFINITY
for (const frame of frames) {
minX = Math.min(minX, frame.xOffset)
minY = Math.min(minY, frame.yOffset)
maxX = Math.max(maxX, frame.xOffset + frame.w)
maxY = Math.max(maxY, frame.yOffset + frame.h)
}
const w = maxX - minX
const h = maxY - minY
const canvas = makeCanvas(w, h)
canvas.style.imageRendering = "pixelated"
canvas.style.width = `${w * 3}px`
canvas.style.height = `${h * 3}px`
let iframe = 0
const ctx = canvas.getContext("2d")
const nextFrame = () => {
const frame = frames[iframe]
ctx.clearRect(0, 0, w, h)
ctx.drawImage(frame.canvas, frame.xOffset - minX, frame.yOffset - minY)
iframe = (iframe + 1) % frames.length
}
nextFrame()
setInterval(nextFrame, 250)
return canvas
}
const showAnimations = (value, container, impl) => {
for (const animation of value.animations) {
container.appendChild(linkDetail(createAnimation(animation, value, impl), value.filename, impl))
}
}
const showStates = (prop, container) => {
for (const celmask of prop.celmasks) {
const state = compositeCels(celsFromMask(prop, celmask))
if (state) {
const img = imageFromCanvas(state.canvas)
img.alt = prop.filename
container.appendChild(linkDetail(img, prop.filename))
}
}
}
const showCels = (prop, container) => {
for (const cel of prop.cels) {
if (cel.canvas) {
container.appendChild(imageFromCanvas(cel.canvas))
}
}
}
const decodeBinary = async (filename, impl) => {
try {
const prop = impl.decode(await readBinary(filename))
prop.filename = filename
return prop
} catch (e) {
return { filename: filename, error: e }
}
}
const showError = (e, filename, impl) => {
const container = document.getElementById("errors")
const errNode = document.createElement("p")
console.error(e)
errNode.appendChild(linkDetail(textNode(filename, "b"), filename, impl))
errNode.appendChild(textNode(e.toString(), "p"))
if (e.stack) {
errNode.appendChild(textNode(e.stack.toString(), "pre"))
}
container.appendChild(errNode)
}
const displayFile = async (filename, container, impl) => {
const value = await decodeBinary(filename, impl)
const displayFile = async (doc, container, filename, decode, show) => {
const value = await decodeBinary(filename, decode)
if (value.error) {
container.parentNode.removeChild(container)
showError(value.error, value.filename, impl)
doc.showError(value.error, filename)
} else {
try {
impl.display(value, container)
showAll(doc, container, filename, [value], show)
} catch (e) {
container.parentNode.removeChild(container)
showError(e, value.filename, impl)
doc.showError(e, filename)
}
}
}
PropImpl.display = (prop, container) => {
if (prop.filename == 'heads/fhead.bin') {
container.appendChild(textNode("CW: Pixel genitals"))
} else if (prop.animations.length > 0) {
showAnimations(prop, container, PropImpl)
} else {
showStates(prop, container)
}
}
BodyImpl.display = (body, container) => {
container.appendChild(linkDetail(createAnimation("walk", body, BodyImpl), body.filename, BodyImpl))
}
const displayList = async (indexFile, containerId, impl) => {
const displayList = async (doc, indexFile, containerId, decode, show) => {
const response = await fetch(indexFile, { cache: "no-cache" })
const filenames = await response.json()
const container = document.getElementById(containerId)
@ -897,8 +38,16 @@ const displayList = async (indexFile, containerId, impl) => {
fileContainer.style.margin = "2px"
fileContainer.style.padding = "2px"
fileContainer.style.display = "inline-block"
fileContainer.appendChild(linkDetail(textNode(filename, "div"), filename, impl))
fileContainer.appendChild(doc.linkDetail(textNode(filename, "div"), filename))
container.appendChild(fileContainer)
displayFile(filename, fileContainer, impl)
displayFile(doc, fileContainer, filename, decode, show)
}
}
}
export const displayBodies = (indexFile, containerId) =>
displayList(docBuilder({ detailHref: "body.html", errorContainer: document.getElementById("errors") }),
indexFile, containerId, decodeBody, showBody)
export const displayProps = (indexFile, containerId) =>
displayList(docBuilder({ detailHref: "detail.html", errorContainer: document.getElementById("errors") }),
indexFile, containerId, decodeProp, showProp)

288
render.js Normal file
View File

@ -0,0 +1,288 @@
// C64 RGB values taken from https://www.c64-wiki.com/wiki/Color
const c64Colors = [
0x000000, 0xffffff, 0x880000, 0xaaffee, 0xcc44cc, 0x00cc55,
0x0000aa, 0xeeee77, 0xdd8855, 0x664400, 0xff7777, 0x333333,
0x777777, 0xaaff66, 0x0088ff, 0xbbbbbb
]
// from paint.m:447
const celPatterns = [
[0x00, 0x00, 0x00, 0x00],
[0xaa, 0xaa, 0xaa, 0xaa],
[0xff, 0xff, 0xff, 0xff],
[0xe2, 0xe2, 0xe2, 0xe2],
[0x8b, 0xbe, 0x0f, 0xcc],
[0xee, 0x00, 0xee, 0x00],
[0xf0, 0xf0, 0x0f, 0x0f],
[0x22, 0x88, 0x22, 0x88],
[0x32, 0x88, 0x23, 0x88],
[0x00, 0x28, 0x3b, 0x0c],
[0x33, 0xcc, 0x33, 0xcc],
[0x08, 0x80, 0x0c, 0x80],
[0x3f, 0x3f, 0xf3, 0xf3],
[0xaa, 0x3f, 0xaa, 0xf3],
[0xaa, 0x00, 0xaa, 0x00],
[0x55, 0x55, 0x55, 0x55]
]
const makeCanvas = (w, h) => {
const canvas = document.createElement("canvas")
canvas.width = w
canvas.height = h
return canvas
}
const defaultColors = {
wildcard: 6,
skin: 10,
pattern: 15
}
export const canvasFromBitmap = (bitmap, colors = {}) => {
if (bitmap.length == 0 || bitmap[0].length == 0) {
return null
}
const { wildcard, pattern, skin } = { ...defaultColors, ...colors }
const patternColors = [6, wildcard, 0, skin]
const h = bitmap.length
const w = bitmap[0].length * 2
const canvas = makeCanvas(w, h)
const ctx = canvas.getContext("2d")
const img = ctx.createImageData(w, h)
const putpixel = (x, y, r, g, b, a) => {
const i = (x * 8) + (y * w * 4)
img.data[i] = r
img.data[i + 1] = g
img.data[i + 2] = b
img.data[i + 3] = a
img.data[i + 4] = r
img.data[i + 5] = g
img.data[i + 6] = b
img.data[i + 7] = a
}
for (let y = 0; y < bitmap.length; y ++) {
const line = bitmap[y]
// TODO: What is pattern 255?
const patbyte = celPatterns[pattern < 0 || pattern > 15 ? 15 : pattern][y % 4]
for (let x = 0; x < line.length; x ++) {
const pixel = line[x]
let color = null
if (pixel == 0) { // transparent
putpixel(x, y, 0, 0, 0, 0)
} else if (pixel == 1) { // wild
const shift = (x % 4) * 2
color = patternColors[(patbyte & (0xc0 >> shift)) >> (6 - shift)]
} else {
color = patternColors[pixel]
}
if (color != null) {
const rgb = c64Colors[color]
putpixel(x, y, (rgb & 0xff0000) >> 16, (rgb & 0xff00) >> 8, rgb & 0xff, 0xff)
}
}
}
ctx.putImageData(img, 0, 0)
return canvas
}
export const celsFromMask = (prop, celMask) => {
const cels = []
for (let icel = 0; icel < 8; icel ++) {
const celbit = 0x80 >> icel
if ((celMask & celbit) != 0) {
cels.push(prop.cels[icel])
}
}
return cels
}
export const frameFromCels = (cels, celColors = null, paintOrder = null) => {
if (cels.length == 0) {
return null
}
let minX = Number.POSITIVE_INFINITY
let minY = Number.POSITIVE_INFINITY
let maxX = Number.NEGATIVE_INFINITY
let maxY = Number.NEGATIVE_INFINITY
let xRel = 0
let yRel = 0
let layers = []
for (const [icel, cel] of cels.entries()) {
if (cel) {
const x = cel.xOffset + xRel
const y = -(cel.yOffset + yRel)
minX = Math.min(minX, x)
minY = Math.min(minY, y)
maxX = Math.max(maxX, cel.width + x)
maxY = Math.max(maxY, cel.height + y)
if (cel.bitmap) {
const colors = (Array.isArray(celColors) ? celColors[icel] : celColors) ?? {}
layers.push({ canvas: canvasFromBitmap(cel.bitmap, colors), x, y })
} else {
layers.push(null)
}
xRel += cel.xRel
yRel += cel.yRel
} else {
layers.push(null)
}
}
if (paintOrder) {
const reordered = []
for (const ilayer of paintOrder) {
reordered.push(layers[ilayer])
}
layers = reordered
}
const w = (maxX - minX) * 8
const h = maxY - minY
const canvas = makeCanvas(w, h)
const ctx = canvas.getContext("2d")
for (const layer of layers) {
if (layer && layer.canvas) {
ctx.drawImage(layer.canvas, (layer.x - minX) * 8, layer.y - minY)
}
}
return { canvas: canvas, xOffset: minX * 8, yOffset: minY, w: w, h: h }
}
const framesFromAnimation = (animation, frameFromState) => {
const frames = []
for (let istate = animation.startState; istate <= animation.endState; istate ++) {
const frame = frameFromState(istate)
if (frame != null) {
frames.push(frame)
}
}
return frames
}
export const framesFromPropAnimation = (animation, prop, colors = null) => {
const frameFromState = (istate) =>
frameFromCels(celsFromMask(prop, prop.celmasks[istate]), colors)
return framesFromAnimation(animation, frameFromState)
}
export const framesFromLimbAnimation = (animation, limb, colors = null) => {
const frameFromState = (istate) => {
const iframe = limb.frames[istate]
if (iframe >= 0) {
return frameFromCels([limb.cels[iframe]], colors)
} else {
return null
}
}
return framesFromAnimation(animation, frameFromState)
}
const actionOrientations = {
"stand_back": "back",
"walk_front": "front",
"walk_back": "back",
"stand_front": "front",
"sit_front": "front"
}
export const framesFromAction = (action, body, limbColors = null) => {
const frames = []
const chore = body.choreography[body.actions[action]]
const animations = []
const orientation = actionOrientations[action] ?? "side"
const limbOrder = orientation == "front" ? body.frontFacingLimbOrder :
orientation == "back" ? body.backFacingLimbOrder :
null // side animations are always displayed in standard limb order
for (const limb of body.limbs) {
if (limb.animations.length > 0) {
animations.push({ ...limb.animations[0] })
} else {
animations.push({ startState: 0, endState: 0 })
}
}
for (const override of chore) {
const ilimb = override.limb
const newAnim = body.limbs[ilimb].animations[override.animation]
animations[ilimb].startState = newAnim.startState
animations[ilimb].endState = newAnim.endState
}
while (true) {
const cels = []
// const celColors = []
let restartedCount = 0
for (const [ilimb, limb] of body.limbs.entries()) {
const animation = animations[ilimb]
if (animation.current == undefined) {
animation.current = animation.startState
} else {
animation.current ++
if (animation.current > animation.endState) {
animation.current = animation.startState
restartedCount ++
}
}
const istate = limb.frames[animation.current]
if (istate >= 0) {
cels.push(limb.cels[istate])
} else {
cels.push(null)
}
// limb.pattern is not a pattern index, it's a LIMB pattern index
// celColors.push({ pattern: limb.pattern })
}
if (restartedCount == animations.length) {
break
}
frames.push(frameFromCels(cels, null, limbOrder))
}
return frames
}
export const imageFromCanvas = (canvas) => {
const img = document.createElement("img")
img.src = canvas.toDataURL()
img.width = canvas.width * 3
img.height = canvas.height * 3
img.style.imageRendering = "pixelated"
return img
}
export const animate = (frames) => {
if (frames.length == 0) {
return textNode("")
} else if (frames.length == 1) {
return imageFromCanvas(frames[0].canvas)
}
let minX = Number.POSITIVE_INFINITY
let minY = Number.POSITIVE_INFINITY
let maxX = Number.NEGATIVE_INFINITY
let maxY = Number.NEGATIVE_INFINITY
for (const frame of frames) {
minX = Math.min(minX, frame.xOffset)
minY = Math.min(minY, frame.yOffset)
maxX = Math.max(maxX, frame.xOffset + frame.w)
maxY = Math.max(maxY, frame.yOffset + frame.h)
}
const w = maxX - minX
const h = maxY - minY
const canvas = makeCanvas(w, h)
canvas.style.imageRendering = "pixelated"
canvas.style.width = `${w * 3}px`
canvas.style.height = `${h * 3}px`
let iframe = 0
const ctx = canvas.getContext("2d")
const nextFrame = () => {
const frame = frames[iframe]
ctx.clearRect(0, 0, w, h)
ctx.drawImage(frame.canvas, frame.xOffset - minX, frame.yOffset - minY)
iframe = (iframe + 1) % frames.length
}
nextFrame()
setInterval(nextFrame, 250)
return canvas
}

87
show.js Normal file
View File

@ -0,0 +1,87 @@
import { animate, celsFromMask, frameFromCels, framesFromAction, framesFromLimbAnimation, framesFromPropAnimation } from "./render.js"
const readBinary = async (url) => {
const response = await fetch(url)
if (!response.ok) {
console.log(response)
throw Error(`Failed to download ${url}`)
}
return new DataView(await response.arrayBuffer())
}
export const textNode = (text, type = "span") => {
const node = document.createElement(type)
node.innerText = text
return node
}
export const wrapLink = (element, href) => {
const link = document.createElement("a")
link.href = href
link.appendChild(element)
return link
}
export const docBuilder = ({ detailHref, errorContainer }) => {
const linkDetail = (element, filename, impl) => {
return detailHref ? wrapLink(element, `${detailHref}?f=${filename}`) : element
}
const showError = (e, filename) => {
if (errorContainer) {
const errNode = document.createElement("p")
console.error(e)
errNode.appendChild(linkDetail(textNode(filename, "b"), filename))
errNode.appendChild(textNode(e.toString(), "p"))
if (e.stack) {
errNode.appendChild(textNode(e.stack.toString(), "pre"))
}
errorContainer.appendChild(errNode)
}
}
return { linkDetail, showError }
}
export const showAll = (doc, container, filename, values, f) => {
for (const value of values) {
try {
let elements = f(value)
if (elements && !Array.isArray(elements)) {
elements = [elements]
}
if (elements) {
for (const element of elements) {
container.appendChild(doc.linkDetail(element, filename))
}
}
} catch (e) {
doc.showError(e, filename)
}
}
}
export const propAnimationShower = (prop, colors = {}) =>
(animation) => animate(framesFromPropAnimation(animation, prop, colors))
export const limbAnimationShower = (limb, colors = {}) =>
(animation) => animate(framesFromLimbAnimation(animation, limb, colors))
export const actionShower = (body, limbColors = null) =>
(action) => animate(framesFromAction(action, body, limbColors))
export const celmaskShower = (prop, colors = null) =>
(celmask) => animate([frameFromCels(celsFromMask(prop, celmask), colors)])
export const celShower = (colors = null) =>
(cel) => animate([frameFromCels([cel], colors)])
export const decodeBinary = async (filename, decode) => {
try {
const value = decode(await readBinary(filename))
value.filename = filename
return value
} catch (e) {
return { filename: filename, error: e }
}
}