const LE = true // little-endian // JS bitmap format: array of scanlines, each scanline being an array of numbers from 0-3 export const emptyBitmap = (w, h, color = 0) => { const bitmap = [] for (let y = 0; y < h; y ++) { const scanline = [] for (let x = 0; x < w; x ++) { scanline.push(color) scanline.push(color) scanline.push(color) scanline.push(color) } bitmap.push(scanline) } return bitmap } export const drawByte = (bitmap, x, y, byte) => { bitmap[y][x] = (byte & 0xc0) >> 6 bitmap[y][x + 1] = (byte & 0x30) >> 4 bitmap[y][x + 2] = (byte & 0x0c) >> 2 bitmap[y][x + 3] = (byte & 0x03) } const signedByte = (byte) => { if ((byte & 0x80) != 0) { const complement = (byte ^ 0xff) + 1 return -complement } else { return byte } } const decodeHowHeld = (byte) => { const heldVal = byte & 0xc0 if (heldVal == 0) { return "swing" } else if (heldVal == 0x40) { return "out" } else if (heldVal == 0x80) { return "both" } else { return "at_side" } } const encodeHowHeld = (howHeld) => { if (howHeld == "swing") { return 0x00 } else if (howHeld == "out") { return 0x40 } else if (howHeld == "both") { return 0x80 } else if (howHeld == "at_side") { return 0xc0 } else { throw new Error(`Unknown hold "${howHeld}"`) } } const decodeCelType = (byte) => { const typeVal = byte & 0xc0 if (typeVal == 0x00) { if ((byte & 0x20) == 0) { return "bitmap" } else { return "text" } } else if (typeVal == 0x40) { return "trap" } else if (typeVal == 0x80) { return "box" } else { return "circle" } } const encodeCelType = (type) => { if (type == "bitmap") { return 0x00 } else if (type == "text") { return 0x20 } else if (type == "trap") { return 0x40 } else if (type == "box") { return 0x80 } else if (type == "circle") { return 0xc0 } else { throw new Error(`Unknown cel type "${type}"`) } } const celDecoder = {} const celEncoder = {} celDecoder.bitmap = (data, cel) => { // bitmap cells are RLE-encoded vertical strips of bytes. Decoding starts from the bottom-left // and proceeds upwards until the top of the bitmap is hit; then then next vertical strip is decoded. // Each byte describes four 2-bit pixels. const bitmap = emptyBitmap(cel.width, cel.height) let ibmp = 0 const end = cel.width * cel.height const putByte = (byte) => { const x = Math.floor(ibmp / cel.height) * 4 const y = (cel.height - (ibmp % cel.height)) - 1 drawByte(bitmap, x, y, byte) ibmp ++ } let i = 6 while (ibmp < end) { const byte = data.getUint8(i) i ++ if (byte == 0) { // A zero byte denotes the start of a run of identical bytes. The second // byte denotes the number of repetitions. const count = data.getUint8(i) i ++ if ((count & 0x80) == 0) { // if the high bit of the count is not set, we read a third byte to // determine the byte to repeat. const val = data.getUint8(i) i ++ for (let repeat = 0; repeat < count; repeat ++) { putByte(val) } } else { // if the high bit of the count is set, the lower 7 bits are used as // the count, and a fully transparent byte is repeated. for (let repeat = 0; repeat < (count & 0x7f); repeat ++) { putByte(0) } } } else { // non-zero bytes are raw bitmap data putByte(byte) } } cel.bitmap = bitmap } celDecoder.box = (data, cel) => { const bitmap = emptyBitmap(cel.width, cel.height) cel.borderLR = (data.getUint8(0) & 0x20) != 0 cel.borderTB = (data.getUint8(0) & 0x10) != 0 cel.pattern = data.getUint8(6) for (let y = 0; y < cel.height; y ++) { for (let x = 0; x < cel.width; x ++) { if (cel.borderTB && (y == 0 || y == (cel.height - 1))) { drawByte(bitmap, x * 4, y, 0xaa) } else { drawByte(bitmap, x * 4, y, cel.pattern) } } if (cel.borderLR) { const line = bitmap[y] line[0] = 2 line[line.length - 1] = 2 } } cel.bitmap = bitmap } const horizontalLine = (bitmap, xa, xb, y, patternByte) => { const xStart = xa - (xa % 4) const xEnd = (xb + (3 - (xb % 4))) - 3 for (let x = xStart + 4; x < xEnd; x += 4) { drawByte(bitmap, x, y, patternByte) } const startBit = ((xa - xStart) * 2) const startByte = (0xff >> startBit) & patternByte drawByte(bitmap, xStart, y, startByte) const endBit = (((xEnd + 3) - xb) * 2) const endByte = (0xff << endBit) & patternByte drawByte(bitmap, xEnd, y, endByte) } celDecoder.trap = (data, cel) => { let border = false // trap.m:21 - high-bit set means "draw a border" // It looks like this was used as a flag and the real height // was ORed with 0x80 - see house2.m, sign2.m // There are also trapezoids that use 0x80 as their height - // bwall6.m, bwall7.m, bwall9.m, magic_wall.m // This appears to be special-cased to mean "no border" at trap.m:26 // mix.m:253 appears to have the logic to calculate y2, extracting // the height by ANDing with 0x7f (when not 0x80) if ((cel.height & 0x80) != 0 && cel.height != 0x80) { border = true cel.height = cel.height & 0x7f } if ((data.getUint8(0) & 0x10) == 0) { // shape_pattern is a repeating 4-pixel colour, same as box cel.pattern = data.getUint8(6) } else { // shape_pattern is 0xff, and the pattern is a bitmap that follows // the trapezoid definition // dline.m:103 - first two bytes are bitmasks used for efficiently calculating // offsets into the texture. This means that the dimensions will be a power of // two, and we can get the width and height simply by adding one to the mask. const texW = data.getUint8(11) + 1 const texH = data.getUint8(12) + 1 cel.texture = emptyBitmap(texW, texH) let i = 13 // dline.m:111 - the y position into the texture is calculated by // ANDing y1 with the height mask; thus, unlike prop bitmaps, we decode // from the top down for (let y = 0; y < texH; y ++) { for (let x = 0; x < texW; x ++) { drawByte(cel.texture, x * 4, y, data.getUint8(i)) i ++ } } } cel.x1a = data.getUint8(7) cel.x1b = data.getUint8(8) cel.x2a = data.getUint8(9) cel.x2b = data.getUint8(10) // trapezoid-drawing algorithm: // draw_line: draws a line from x1a,y1 to x1b, y1 // handles border drawing (last/first line, edges) // decreases vcount, then jumps to cycle1 if there // are more lines // cycle1: run bresenham, determine if x1a (left edge) needs to be incremented // or decremented (self-modifying code! the instruction in inc_dec1 is // written at trap.m:52) // has logic to jump back to cycle1 if we have a sharp enough angle that // we need to move more than one pixel horizontally // cycle2: same thing, but for x2a (right edge) // at the end, increments y1 and jumps back to the top of draw_line cel.width = Math.floor((Math.max(cel.x1a, cel.x1b, cel.x2a, cel.x2b) + 3) / 4) // trap.m:32 - delta_y and vcount are calculated by subtracting y2 - y1. // mix.m:253: y2 is calculated as cel_y + cel_height // mix.m:261: y1 is calculated as cel_y + 1 // So for a one-pixel tall trapezoid, deltay is 0, because y1 == y2. // vcount is decremented until it reaches -1, compensating for the off-by-one. const deltay = cel.height - 1 cel.bitmap = emptyBitmap(cel.width, cel.height) const dxa = Math.abs(cel.x1a - cel.x2a) const dxb = Math.abs(cel.x1b - cel.x2b) const countMaxA = Math.max(dxa, deltay) const countMaxB = Math.max(dxb, deltay) const inca = cel.x1a < cel.x2a ? 1 : -1 const incb = cel.x1b < cel.x2b ? 1 : -1 let x1aLo = Math.floor(countMaxA / 2) let y1aLo = x1aLo let x1bLo = Math.floor(countMaxB / 2) let y1bLo = x1bLo let xa = cel.x1a let xb = cel.x1b for (let y = 0; y < cel.height; y ++) { const line = cel.bitmap[y] if (border && (y == 0 || y == (cel.height - 1))) { // top and bottom border line horizontalLine(cel.bitmap, xa, xb, y, 0xaa, true) } else { if (cel.texture) { const texLine = cel.texture[y % cel.texture.length] for (let x = xa; x <= xb; x ++) { line[x] = texLine[x % texLine.length] } } else { horizontalLine(cel.bitmap, xa, xb, y, cel.pattern, border) } } if (border) { line[xa] = 2 line[xb] = 2 } // cycle1: move xa do { x1aLo += dxa if (x1aLo >= countMaxA) { x1aLo -= countMaxA xa += inca } y1aLo += deltay } while (y1aLo < countMaxA) y1aLo -= countMaxA // cycle2: move xb do { x1bLo += dxb if (x1bLo >= countMaxB) { x1bLo -= countMaxB xb += incb } y1bLo += deltay } while (y1bLo < countMaxA) y1bLo -= countMaxA } } const decodeCel = (data, changesColorRam) => { const cel = { data: data, changesColorRam: changesColorRam, type: decodeCelType(data.getUint8(0)), // wild: (data.getUint8(0) & 0x10) == 0 ? "color" : "pattern", width: data.getUint8(0) & 0x0f, height: data.getUint8(1), xOffset: data.getInt8(2), yOffset: data.getInt8(3), xRel: data.getInt8(4), yRel: data.getInt8(5) } if (celDecoder[cel.type]) { celDecoder[cel.type](data, cel) } return cel } const decodeSide = (byte) => { const side = byte & 0x03 if (side == 0x00) { return "left" } else if (side == 0x01) { return "right" } else if (side == 0x02) { return "up" } else { return "down" } } const encodeSide = (side) => { if (side == "left") { return 0x00 } else if (side == "right") { return 0x01 } else if (side == "up") { return 0x02 } else if (side == "down") { return 0x03 } else { throw new Error(`Unknown side "${side}"`) } } const decodeWalkto = (byte) => { return { fromSide: decodeSide(byte), offset: signedByte(byte & 0xfc) } } const encodeWalkto = ({ fromSide, offset }) => { return encodeSide(fromSide) | (offset & 0xfc) } const decodeAnimations = (data, startEndTableOff, firstCelOff, stateCount) => { const animations = [] // The prop structure also does not encode a count for how many frames there are, so we simply // stop parsing once we find one that doesn't make sense. // We also use the heuristic that this structure always precedes the first cel, as that seems to be // consistently be the case with all the props in the Habitat source tree. We'll stop reading // animation data if we cross that boundary. If we encounter a prop that has the animation data // _after_ the cel data, which would be legal but doesn't happen in practice, then we ignore this // heuristic rather than failing to parse any animation data. // It's possible for there to be no frames, which is represented by an offset of 0 (no_animation) if (startEndTableOff != 0) { for (let frameOff = startEndTableOff; (startEndTableOff > firstCelOff) || (frameOff < firstCelOff); frameOff += 2) { // each animation is two bytes: the starting state, and the ending state // the first byte can have its high bit set to indicate that the animation should cycle const cycle = (data.getUint8(frameOff) & 0x80) != 0 const startState = data.getUint8(frameOff) & 0x7f const endState = data.getUint8(frameOff + 1) if (startState >= stateCount || endState >= stateCount) { break } animations.push({ cycle: cycle, startState: startState, endState: endState }) } } return animations } export const decodeProp = (data) => { const prop = { data: data, howHeld: decodeHowHeld(data.getUint8(0)), colorBitmask: data.getUint8(1), containerXYOff: data.getUint8(3), // TODO: parse this when nonzero walkto: { left: decodeWalkto(data.getUint8(4)), right: decodeWalkto(data.getUint8(5)), yoff: data.getInt8(6) }, celmasks: [], cels: [] } const stateCount = (data.getUint8(0) & 0x3f) + 1 const graphicStateOff = data.getUint8(2) const celMasksOff = 7 const celOffsetsOff = celMasksOff + stateCount // The prop structure does not directly encode a count for how many cels there are, but each // "graphic state" is defined by a bitmask marking which cels are present, and we do know how // many states there are. We can assume that all cels are referenced by at least one state, // and use that to determine the cel count. let allCelsMask = 0 for (let icelmask = 0; icelmask < stateCount; icelmask ++) { const celmask = data.getUint8(celMasksOff + icelmask) prop.celmasks.push(celmask) allCelsMask |= celmask } if (allCelsMask != 0x80 && allCelsMask != 0xc0 && allCelsMask != 0xe0 && allCelsMask != 0xf0 && allCelsMask != 0xf8 && allCelsMask != 0xfc && allCelsMask != 0xfe && allCelsMask != 0xff) { throw new Error("Inconsistent graphic state cel masks - implies unused cel data") } let firstCelOff = Number.POSITIVE_INFINITY for (let celOffsetOff = celOffsetsOff; allCelsMask != 0; celOffsetOff += 2) { const icel = prop.cels.length const celbit = 0x80 >> icel const celOff = data.getUint16(celOffsetOff, LE) firstCelOff = Math.min(celOff, firstCelOff) prop.cels.push(decodeCel(new DataView(data.buffer, celOff), (prop.colorBitmask & celbit) != 0)) allCelsMask = (allCelsMask << 1) & 0xff } prop.animations = decodeAnimations(data, graphicStateOff, firstCelOff, stateCount) return prop } const decodeLimb = (data, limb) => { let frameCount = data.getUint8(0) + 1 limb.frames = [] for (let iframe = 0; iframe < frameCount; iframe ++) { limb.frames.push(data.getInt8(3 + iframe)) } const celOffsetsOff = 3 + frameCount const maxCelIndex = Math.max(...limb.frames) limb.cels = [] let firstCelOff for (let icel = 0; icel <= maxCelIndex; icel ++) { const celOff = data.getUint16(celOffsetsOff + (icel * 2), LE) if (icel == 0) { firstCelOff = celOff } limb.cels.push(decodeCel(new DataView(data.buffer, data.byteOffset + celOff))) } limb.animations = decodeAnimations(data, data.getUint8(2), firstCelOff, limb.frames.length) } export const choreographyActions = [ "init", "stand", "walk", "hand_back", "sit_floor", "sit_chair", "bend_over", "bend_back", "point", "throw", "get_shot", "jump", "punch", "wave", "frown", "stand_back", "walk_front", "walk_back", "stand_front", "unpocket", "gimme", "knife", "arm_get", "hand_out", "operate", "arm_back", "shoot1", "shoot2", "nop", "sit_front" ] export const decodeBody = (data) => { const body = { data: data, headCelNumber: data.getUint8(19), frozenWhenStands: data.getUint8(20), frontFacingLimbOrder: [], backFacingLimbOrder: [], limbs: [], choreography: [], actions: {} } for (let ilimb = 0; ilimb < 6; ilimb ++) { body.frontFacingLimbOrder.push(data.getUint8(27 + ilimb)) body.backFacingLimbOrder.push(data.getUint8(33 + ilimb)) const limb = { pattern: data.getUint8(21 + ilimb), affectedByHeight: data.getUint8(39 + ilimb) } const limbOff = data.getUint16(7 + (ilimb * 2), LE) decodeLimb(new DataView(data.buffer, limbOff), limb) body.limbs.push(limb) } const choreographyIndexOff = data.getUint16(0, LE) const choreographyTableOff = data.getUint16(2, LE) const indexToChoreography = new Map() for (const [i, action] of choreographyActions.entries()) { let tableIndex = data.getUint8(choreographyIndexOff + i) let choreographyIndex = indexToChoreography.get(tableIndex) if (choreographyIndex == undefined) { choreographyIndex = body.choreography.length indexToChoreography.set(tableIndex, choreographyIndex) const choreography = [] body.choreography.push(choreography) for (;; tableIndex ++) { const state = data.getUint8(choreographyTableOff + tableIndex) let limb = (state & 0x70) >> 4 let animation = state & 0x0f if (limb == 6) { limb = 5 animation += 0x10 } choreography.push({ limb, animation }) if ((state & 0x80) != 0) { break } } } body.actions[action] = choreographyIndex } return body }