import cv2 import imutils import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib import colors RESIZE_RATIO = 0.07 def shrink(img): return cv2.resize(img, None, fx=RESIZE_RATIO, fy=RESIZE_RATIO) def noop(*x): pass def darken_color(img, sat=20, val=225): hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) h, s, v = cv2.split(hsv) s[s > sat] = 255 v[v < val] = 0 hsv2 = cv2.merge((h, s, v)) return cv2.cvtColor(hsv2, cv2.COLOR_HSV2BGR) def interactive_edge(filename): img = shrink(cv2.imread(filename)) cv2.namedWindow("image") cv2.createTrackbar("threshold1", "image", 5, 50, noop) cv2.createTrackbar("threshold2", "image", 20, 50, noop) while 1: threshold1 = cv2.getTrackbarPos("threshold1", "image") threshold2 = cv2.getTrackbarPos("threshold2", "image") edged = edge_img(img, threshold1 * 10, threshold2 * 10) # contours = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # contours = imutils.grab_contours(contours) # shapes = cv2.drawContours(edged.copy(), contours, -1, (255, 255, 255), -1) cv2.imshow("image", edged) if cv2.waitKey(0) < 0: break cv2.destroyWindow("image") def edge_img(orig, t1=50, t2=200): img = cv2.GaussianBlur(orig.copy(), (5, 5), 0) img = darken_color(img) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray_blurred = cv2.GaussianBlur(gray, (5, 5), 0) return cv2.Canny(gray_blurred, t1, t2) def approximate_contour(c): peri = cv2.arcLength(c, True) return cv2.approxPolyDP(c, 0.02 * peri, True) def group_contours(contours): remaining = contours.copy() groups = [] while len(remaining) > 0: group = [remaining[0]] groups.append(group) grew = False remaining = remaining[1:] while True: nextremaining = [] l, t, r, b = cv2.boundingRect(remaining[0]) for c in remaining: l2, t2, r2, b2 = cv2.boundingRect(c) if r2 < l or l2 > r or t2 > b or b2 < t: # they do not intersect nextremaining.append(c) else: # they do intersect grew = True group.append(c) l = min(l, l2) t = min(t, t2) r = max(r, r2) b = max(b, b2) remaining = nextremaining if not grew: break return groups def autocrop_contour(orig, contour): approx = approximate_contour(contour) if len(approx) == 4: # It's a rectangle - perspective-correct it pass else: # It's a disc - crop around it pass def interactive_contour(filename): orig = cv2.imread(filename) orig = shrink(orig) edge = edge_img(orig) contours = cv2.findContours(edge, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) contours = imutils.grab_contours(contours) contours = sorted(contours, key=cv2.contourArea, reverse=True) contours = [approximate_contour(c) for c in contours] cv2.namedWindow("image") cv2.createTrackbar("contour", "image", 0, len(contours) - 1, noop) while True: icontour = cv2.getTrackbarPos("contour", "image") img = cv2.drawContours(orig.copy(), contours, icontour, (255, 0, 255), 3) cv2.imshow("image", img) if cv2.waitKey() < 0: break def get_pixel_colors(rgbimg): pixel_colors = rgbimg.reshape((np.shape(rgbimg)[0] * np.shape(rgbimg)[1], 3)) norm = colors.Normalize(vmin=-1.0, vmax=1.0) norm.autoscale(pixel_colors) return norm(pixel_colors).tolist() def plot_hsv(rgbimg): hsv = cv2.cvtColor(rgbimg.copy(), cv2.COLOR_BGR2HSV) h, s, v = cv2.split(hsv) fig = plt.figure() axis = fig.add_subplot(1, 1, 1, projection="3d") axis.scatter( h.flatten(), s.flatten(), v.flatten(), facecolors=get_pixel_colors(rgbimg), marker=".", ) axis.set_xlabel("Hue") axis.set_ylabel("Sat") axis.set_zlabel("Val") plt.show() def interactive_darken(filename): img = cv2.imread(filename) img = shrink(img) hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) cv2.namedWindow("image") cv2.createTrackbar("Sat", "image", 30, 255, noop) cv2.createTrackbar("Val", "image", 225, 255, noop) while True: sat = cv2.getTrackbarPos("Sat", "image") val = cv2.getTrackbarPos("Val", "image") h, s, v = cv2.split(hsv) s[s > sat] = 255 v[v < val] = 0 hsv2 = cv2.merge((h, s, v)) bgr = cv2.cvtColor(hsv2, cv2.COLOR_HSV2BGR) cv2.imshow("image", bgr) if cv2.waitKey() < 0: break if __name__ == "__main__": interactive_edge("testimg3.jpg")