romtool/cvtest.py

220 lines
6.8 KiB
Python

import cv2
import imutils
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib import colors
RESIZE_RATIO = 0.07
FILENAMES = ["testimg.jpg", "testimg2.jpg", "testimg3.jpg"]
def shrink(img):
return cv2.resize(img, None, fx=RESIZE_RATIO, fy=RESIZE_RATIO)
def noop(*x):
pass
def darken_color(img, sat=20, val=225):
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
s[s > sat] = 255
v[v < val] = 0
hsv2 = cv2.merge((h, s, v))
return cv2.cvtColor(hsv2, cv2.COLOR_HSV2BGR)
def interactive_edge(filename):
img = shrink(cv2.imread(filename))
cv2.createTrackbar("threshold1", "image", 5, 50, noop)
cv2.createTrackbar("threshold2", "image", 20, 50, noop)
while handle_key():
threshold1 = cv2.getTrackbarPos("threshold1", "image")
threshold2 = cv2.getTrackbarPos("threshold2", "image")
edged = edge_img(img, threshold1 * 10, threshold2 * 10)
# contours = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# contours = imutils.grab_contours(contours)
# shapes = cv2.drawContours(edged.copy(), contours, -1, (255, 255, 255), -1)
cv2.imshow("image", edged)
def edge_img(orig, t1=50, t2=200):
img = cv2.GaussianBlur(orig.copy(), (5, 5), 0)
img = darken_color(img)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray_blurred = cv2.GaussianBlur(gray, (5, 5), 0)
return cv2.Canny(gray_blurred, t1, t2)
def approximate_contour(c):
peri = cv2.arcLength(c, True)
return cv2.approxPolyDP(c, 0.02 * peri, True)
def group_contours(contours):
remaining = contours.copy()
groups = []
while len(remaining) > 0:
group = [remaining[0]]
groups.append(group)
grew = False
remaining = remaining[1:]
while True:
nextremaining = []
l, t, r, b = cv2.boundingRect(remaining[0])
for c in remaining:
l2, t2, r2, b2 = cv2.boundingRect(c)
if r2 < l or l2 > r or t2 > b or b2 < t:
# they do not intersect
nextremaining.append(c)
else:
# they do intersect
grew = True
group.append(c)
l = min(l, l2)
t = min(t, t2)
r = max(r, r2)
b = max(b, b2)
remaining = nextremaining
if not grew:
break
return groups
def rects_intersect(rect1, rect2):
l1, t1, w1, h1 = rect1
l2, t2, w2, h2 = rect2
r1 = l1 + w1
r2 = l2 + w2
b1 = t1 + h1
b2 = t2 + h2
intersect = not (r2 < l1 or l2 > r1 or t2 > b1 or b2 < t1)
print("1:", rect1, "2:", rect2, intersect)
return intersect
def merge_contours(contours):
while True:
# take the convex hull of all discovered contours, then merge any contours whose bounding rectangles
# overlap. do this repeatedly until you have only completely non-overlapping islands.
consumed = set()
prev_contours = [cv2.convexHull(c) for c in contours]
contours = []
for i, contour in enumerate(prev_contours):
if not (i in consumed):
for iother, other in enumerate(prev_contours[i+1:], i+1):
if rects_intersect(cv2.boundingRect(contour), cv2.boundingRect(other)):
contour = np.vstack([contour, other])
consumed.add(iother)
contours.append(contour)
if len(consumed) == 0:
return contours
def contours_to_boxes(contours):
boxes = []
for c in contours:
# calculate two box contours:
# 1. axis-aligned bounding rectangle of the minimum enclosing circle
# 2. minimum area rotated rectangle
# use the smaller of the two (preferring #1 if they are of similar size)
(x, y), r = cv2.minEnclosingCircle(c)
box1 = np.intp([(x - r, y - r), (x + r, y - r), (x + r, y + r), (x - r, y + r)])
box2 = np.intp(cv2.boxPoints(cv2.minAreaRect(c)))
if cv2.contourArea(box1) < cv2.contourArea(box2) * 1.1:
boxes.append(box1)
else:
boxes.append(box2)
return boxes
def interactive_contour(filename):
orig = cv2.imread(filename)
orig = shrink(orig)
edge = edge_img(orig)
contours = cv2.findContours(edge, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = imutils.grab_contours(contours)
contours = merge_contours(contours)
contours = contours_to_boxes(contours)
cv2.createTrackbar("contour", "image", 0, len(contours) - 1, noop)
while handle_key():
icontour = cv2.getTrackbarPos("contour", "image")
img = cv2.drawContours(orig.copy(), contours, icontour, (255, 0, 255), 3)
cv2.imshow("image", img)
def get_pixel_colors(rgbimg):
pixel_colors = rgbimg.reshape((np.shape(rgbimg)[0] * np.shape(rgbimg)[1], 3))
norm = colors.Normalize(vmin=-1.0, vmax=1.0)
norm.autoscale(pixel_colors)
return norm(pixel_colors).tolist()
def plot_hsv(rgbimg):
hsv = cv2.cvtColor(rgbimg.copy(), cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
fig = plt.figure()
axis = fig.add_subplot(1, 1, 1, projection="3d")
axis.scatter(
h.flatten(),
s.flatten(),
v.flatten(),
facecolors=get_pixel_colors(rgbimg),
marker=".",
)
axis.set_xlabel("Hue")
axis.set_ylabel("Sat")
axis.set_zlabel("Val")
plt.show()
def interactive_darken(filename):
img = cv2.imread(filename)
img = shrink(img)
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
cv2.createTrackbar("Sat", "image", 30, 255, noop)
cv2.createTrackbar("Val", "image", 225, 255, noop)
while handle_key():
sat = cv2.getTrackbarPos("Sat", "image")
val = cv2.getTrackbarPos("Val", "image")
h, s, v = cv2.split(hsv)
s[s > sat] = 255
v[v < val] = 0
hsv2 = cv2.merge((h, s, v))
bgr = cv2.cvtColor(hsv2, cv2.COLOR_HSV2BGR)
cv2.imshow("image", bgr)
selected_file = FILENAMES[0]
selected_tool = interactive_contour
def handle_key():
global selected_file, selected_tool
key = cv2.waitKey(1) & 0xff
if key == 27: # esc
selected_tool = None
elif key >= ord('0') and key <= ord('9'):
selected_file = FILENAMES[key - ord('0')]
elif key == ord("e"):
selected_tool = interactive_edge
elif key == ord("d"):
selected_tool = interactive_darken
elif key == ord("c"):
selected_tool = interactive_contour
else:
return True
return False
def tool_loop():
while selected_tool:
cv2.namedWindow("image")
selected_tool(selected_file)
cv2.destroyWindow("image")
if __name__ == "__main__":
tool_loop()